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Abstract: Online query processing for large-scale, incremental data analysis on a distributed stream processing engine 

(DSPE). Our goal is to convert any SQL-like query to an incremental DSPE program automatically.  In contrast to 

other approaches, we derive incremental programs that return accurate results, not approximate answers, by retaining a 

minimal state during the query evaluation lifetime and by using a novel incremental evaluation technique, which, at 

each time interval, returns an accurate snapshot answer that depends on the current state and the latest batches of data. 

Our methods can handle many forms of queries on nested data collections, including iterative and nested queries, 

group-by with aggregation, and equi-joins. Finally, we report on a prototype implementation of our framework, called 

MRQL Streaming, running on top of Spark and we experimentally validate the effectiveness of our methods. 
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1. INTRODUCTION 

 

We are living in an age when an explosive amount of data 

is being generated every day. Data from sensors, mobile 

devices, social networking websites, scientific data & 

enterprises – all are contributing to this huge explosion in 

data. This sudden bombardment can be grasped by the fact 

that we have created a vast volume of data in the last two 

years. Big Data- as these large chunks of data is generally 

called- has become one of the hottest research trends 
today. 
 

Research suggests that tapping the potential of this data 

can benefit businesses, scientific disciplines and the public 

sector – contributing to their economic gains as well as 
development in every sphere. The need is to develop 

efficient systems that can exploit this potential to the 

maximum, keeping in mind the current challenges has 

been a shift in the architecture of data-processing systems 

today, from the centralized architecture to the distributed 

associated with its analysis, structure, scale, timeliness and 

privacy. There architecture. Enterprises face the challenge 

of processing these huge chunks of data, and have found 

that none of the existing centralized architectures can 

efficiently handle this huge volume of data. These are thus 

utilizing distributed architectures to harness this data. 

Several solutions to the Big Data problem have emerged 
which includes the Map Reduce environment championed 

by Google which is now available open-source in Hadoop. 

Hadoop‟s distributed processing; Map Reduce algorithms 

and overall architecture are a major step towards achieving 

the promised benefits of Big Data. 

Map Reduce & Hadoop are the most widely used models 

used today for Big Data processing. Hadoop is an open 

source large-scale data processing framework that  

 

 

supports distributed processing of large chunks of data 

using simple programming models. The Apache Hadoop 

project consists of the HDFS and Hadoop Map Reduce in 

addition to other modules. The software is modelled to 

harvest upon the processing power of clustered computing 

while managing failures at node level. The Map Reduce 

software framework which was originally introduced by 

Google in 2004 is a programming model, which now 
adopted by Apache Hadoop, consists of splitting the large 

chunks of data, and „Map‟ & „Reduce‟ phases (Fig. 1). 

The Map Reduce framework handles task scheduling, 

monitoring and failures. 

 

 
 

2. LITERATURE SURVEY 

 

Incremental data processing can generally achieve better 
performance and may require less memory than batch 

processing for many data analysis tasks. It can also be 
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used for analyzing Big Data incrementally, in batches that 

can fit in memory. Consequently, incremental data 

processing can also be useful to stream-based applications 

that need to process continuous streams of data in real-

time with low latency, which is not feasible with existing 
batch analysis tools. For example, the Map-Reduce 

framework [9], which was designed for batch processing, 

is ill-suited for certain Big Data workloads, such as real-

time analytics, continuous queries, and iterative 

algorithms. New alternative frameworks have emerged 

that address the inherent limitations of the Map-Reduce 

model and perform better for a wider spectrum of 

workloads. 

Currently, among them, the most promising frameworks 

that seem to be good alternatives to Map-Reduce while 

addressing its drawbacks are Google’s Pregel , Apache 
Spark [6], and Apache Flink [13], which are in-memory 

distributed computing systems.  

There are also quite a few emerging distributed stream 

processing engines (DSPEs) that realize online, low-

latency data processing with a series of batch 

computations at small time intervals, using a continuous 

streaming system that processes data as they arrive and 

emits continuous results. To cope with blocking operations 

and unbounded memory requirements, some of these 

systems build on the well-established research on data 

streaming based on sliding windows and incremental 

operators [18], which includes systems such as Aurora 
[17] and Telegraph [19], often yielding approximate 

answers, rather than accurate results. Currently, among 

these DSPEs, the most popular platforms are Twitter’s 

(now Apache) Storm [3], Spark’s D-Streams [16], Flink 

Streaming [13], Apache S4 [16], and Apache Samza [16]. 

The process of the research into complex data basically 

concerned with the revealing of hidden patterns. 

Sagiroglu, S.; Sinanc, D. (20-24 May 2013),”Big Data: A 

Review” describe the big data content, its scope, methods, 

samples, advantages and challenges of Data. The critical 

issue about the Big data is the privacy and security. Big 
data samples describe the review about the atmosphere, 

biological science and research. Life sciences etc.By this 

paper, we can conclude that any organization in any 

industry having big data can take the benefit from its 

careful analysis for the problem solving purpose. Using 

Knowledge Discovery from the Big data easy to get the 

information from the complicated data sets [1]. 

The overall Evaluation describe that the data is increasing 

and becoming complex. The challenge is not only to 

collect and manage the data also how to extract the useful 

information from that collected data. 

According to the Intel IT Center, there are many 
challenges related to Big Data which are data growth, data 

infrastructure, data variety, data visualization, data 

velocity. 

Garlasu, D.; Sandulescu, V. ; Halcu, I. ; Neculoiu, G. ;( 

17-19 Jan. 2013),”A Big Data implementation based on 

Grid Computing”, Grid Computing offered the advantage 

about the storage capabilities and the processing power 

and the Hadoop technology is used for the implementation 

purpose. Grid Computing provides the concept of 

distributed computing. The benefit of Grid computing 

center is the high storage capability and the high 

processing power. Grid Computing makes the big 

contributions among the scientific research, help the 
scientists to analyze and store the large and complex data 

[4]. 

 

3. PROPOSED WORK 

 

 Data is conceptually record-oriented in the Hadoop 

programming framework. Individual input files are broken 

into lines or into other formats specific to the application 

logic. Each process running on a node in the cluster then 

processes a subset of these records. The Hadoop 

framework then schedules these processes in proximity to 
the location of data/records using knowledge from the 

distributed file system.  

 Since files are spread across the distributed file system as 

chunks, each compute process running on a node operates 

on a subset of the data. Which data operated on by a node 

is chosen based on its locality to the node: most data is 

read from the local disk straight into the CPU, alleviating 

strain on network bandwidth and preventing unnecessary 

network transfers. This strategy of moving computation to 

the data, instead of moving thedata to the computation 

allows Hadoop to achieve high data locality which in turn 

results in high performance.  
 

PKMeans Based on MapReduce 
As the analysis above, PKMeans algorithm needs one kind 

of MapReduce job. The map function performs the 

procedure of assigning each sample to the closest center 

while the reduce function performs the procedure of 

updating the new centers. In order to decrease the cost of 

network communication, a combiner function is developed 

to deal with partial combination of the intermediate values 

with the same key within the same map task. 

Map-function The input dataset is stored on HDFS[11] as 
a sequence file of<key, value>pairs, each of which 

represents arecord in the dataset. The key is the offset in 

bytes of this record to the start point of the data file, and 

the value is a string of the content of this record. The 

dataset is split and globally broadcast to all mappers. 

Consequently, the distance computations are parallel 

executed. For each map task, PKMeans construct a global 

variant centers which is an array containing the 

information about centers of the clusters. Given the 

information, a mapper can compute the closest center 

point for each sample. The intermediate values are then 

composed of two parts: the index of the closest center 
point and the sample information. The pseudo code of map 

function is shown in Algorithm.  

MapReduce Programming Model MapReduce is a 

software framework proposed by Google, which is a basis 

computational model of current cloud computing platform. 

Its main function is to handle massive amounts of data. 

Because of its simplicity, MapReduce can effectively deal 

with machine failures and easily expand the number of 
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system nodes. MapReduce provides a distributed approach 

to process massive data distributed on a large -scale 

computer clusters. The input data is stored in the 

distributed file system (HDFS), MapReduce adopts a 

divide and conquer method to evenly divided the inputted 
large data sets into small data sets, and then processed on 

different node, which has achieved parallelism. 

 

In the MapReduce programming model, data is seen as a 

series of keyvalue pairs like , as shown in Figure 1, the 

workflow of MapReduce consists of three phases: Map, 

Shuffle, and Reduce. Users simply write map and reduce 

functions. In the Map phase, a map task corresponds to a 

node in the cluster, as the other word, multiple map tasks 

are be running in parallel at the same time in a cluster. 

Each map call is given a key-value pair (k1,v1) and 
produces a list of (k2,v2) pairs. The output of the map 

calls is transferred to the reduce nodes (shuffle phase).  

All the intermediate records with the same intermediate 

key (k2) are sent to the same reducer node. At each reduce 

node, the received intermediate records are sorted and 

grouped (all the intermediate records with the same key 

form a single group). Each group is processed in a single 

reduce call. The data processing [4-6] can be summarized 

as follows: Map (k1, v1) −→ list(k2, v2) 

 Reduce (k2, list(v2)) −→ list(k3, v3) 

 

4. CONCLUSION 
 

We propose general, sound methods to transform batch 

queries to incremental queries. The first step in our 

approach is to transform a query so that it propagates the 

join and group-by keys to the query output. This technique 

is known as lineage tracking .That way, the values in the 

query output are grouped by a key combination, which 

corresponds the join and group-by keys used in deriving 

these values during query evaluation. 

 If we also group the new data in the same way, then 

computations on current data can be combined with the 
computations on the new data by joining the data on these 

keys. This approach requires that we can combine 

computations on data that have the same lineage to derive 

incremental results. In our framework, this task is 

accomplished by transforming a query to a ’monoid 

homomorphism’ by extracting the non-homomorphic parts 

of the query outwards, using algebraic transformation 

rules, and combining them to form an answer function, 

which is detached from the rest of the query. 

We present a general automated method to convert most 

distributed data-analysis queries to incremental stream 

processing programs. 
 

• Our methods can handle many forms of queries, 

including iterative and nested queries, group-by with 

aggregation, and joins on one-to-many relationships. 

• We report on a prototype implementation of our 

framework using Apache MRQL running on top of 

Apache Spark Streaming. We show the effectiveness of 

our method through experiments on four queries: 

groupBy, join-groupBy, k-means clustering, and 

PageRank. 
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