
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51148 224

A Survey on Large Scale Dataset Processing Into

Batches Using Map Reduce Query Language

(MRQL) Technique

Pragati P. Pachghare
1
, Prof. Pravin G. Kulurkar

2

M.Tech CSE, Vidarbha Institute of Engineering, Nagpur1

H.O.D, CSE, Vidarbha Institute of Engineering, Nagpur2

Abstract: Online query processing for large-scale, incremental data analysis on a distributed stream processing engine

(DSPE). Our goal is to convert any SQL-like query to an incremental DSPE program automatically. In contrast to

other approaches, we derive incremental programs that return accurate results, not approximate answers, by retaining a

minimal state during the query evaluation lifetime and by using a novel incremental evaluation technique, which, at

each time interval, returns an accurate snapshot answer that depends on the current state and the latest batches of data.

Our methods can handle many forms of queries on nested data collections, including iterative and nested queries,

group-by with aggregation, and equi-joins. Finally, we report on a prototype implementation of our framework, called

MRQL Streaming, running on top of Spark and we experimentally validate the effectiveness of our methods.

Keywords: Outlier detection, Stream data mining, local outlier, Memory efficiency.

1. INTRODUCTION

We are living in an age when an explosive amount of data

is being generated every day. Data from sensors, mobile

devices, social networking websites, scientific data &

enterprises – all are contributing to this huge explosion in

data. This sudden bombardment can be grasped by the fact

that we have created a vast volume of data in the last two

years. Big Data- as these large chunks of data is generally

called- has become one of the hottest research trends
today.

Research suggests that tapping the potential of this data

can benefit businesses, scientific disciplines and the public

sector – contributing to their economic gains as well as
development in every sphere. The need is to develop

efficient systems that can exploit this potential to the

maximum, keeping in mind the current challenges has

been a shift in the architecture of data-processing systems

today, from the centralized architecture to the distributed

associated with its analysis, structure, scale, timeliness and

privacy. There architecture. Enterprises face the challenge

of processing these huge chunks of data, and have found

that none of the existing centralized architectures can

efficiently handle this huge volume of data. These are thus

utilizing distributed architectures to harness this data.

Several solutions to the Big Data problem have emerged
which includes the Map Reduce environment championed

by Google which is now available open-source in Hadoop.

Hadoop‟s distributed processing; Map Reduce algorithms

and overall architecture are a major step towards achieving

the promised benefits of Big Data.

Map Reduce & Hadoop are the most widely used models

used today for Big Data processing. Hadoop is an open

source large-scale data processing framework that

supports distributed processing of large chunks of data

using simple programming models. The Apache Hadoop

project consists of the HDFS and Hadoop Map Reduce in

addition to other modules. The software is modelled to

harvest upon the processing power of clustered computing

while managing failures at node level. The Map Reduce

software framework which was originally introduced by

Google in 2004 is a programming model, which now
adopted by Apache Hadoop, consists of splitting the large

chunks of data, and „Map‟ & „Reduce‟ phases (Fig. 1).

The Map Reduce framework handles task scheduling,

monitoring and failures.

2. LITERATURE SURVEY

Incremental data processing can generally achieve better
performance and may require less memory than batch

processing for many data analysis tasks. It can also be

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51148 225

used for analyzing Big Data incrementally, in batches that

can fit in memory. Consequently, incremental data

processing can also be useful to stream-based applications

that need to process continuous streams of data in real-

time with low latency, which is not feasible with existing
batch analysis tools. For example, the Map-Reduce

framework [9], which was designed for batch processing,

is ill-suited for certain Big Data workloads, such as real-

time analytics, continuous queries, and iterative

algorithms. New alternative frameworks have emerged

that address the inherent limitations of the Map-Reduce

model and perform better for a wider spectrum of

workloads.

Currently, among them, the most promising frameworks

that seem to be good alternatives to Map-Reduce while

addressing its drawbacks are Google’s Pregel , Apache
Spark [6], and Apache Flink [13], which are in-memory

distributed computing systems.

There are also quite a few emerging distributed stream

processing engines (DSPEs) that realize online, low-

latency data processing with a series of batch

computations at small time intervals, using a continuous

streaming system that processes data as they arrive and

emits continuous results. To cope with blocking operations

and unbounded memory requirements, some of these

systems build on the well-established research on data

streaming based on sliding windows and incremental

operators [18], which includes systems such as Aurora
[17] and Telegraph [19], often yielding approximate

answers, rather than accurate results. Currently, among

these DSPEs, the most popular platforms are Twitter’s

(now Apache) Storm [3], Spark’s D-Streams [16], Flink

Streaming [13], Apache S4 [16], and Apache Samza [16].

The process of the research into complex data basically

concerned with the revealing of hidden patterns.

Sagiroglu, S.; Sinanc, D. (20-24 May 2013),”Big Data: A

Review” describe the big data content, its scope, methods,

samples, advantages and challenges of Data. The critical

issue about the Big data is the privacy and security. Big
data samples describe the review about the atmosphere,

biological science and research. Life sciences etc.By this

paper, we can conclude that any organization in any

industry having big data can take the benefit from its

careful analysis for the problem solving purpose. Using

Knowledge Discovery from the Big data easy to get the

information from the complicated data sets [1].

The overall Evaluation describe that the data is increasing

and becoming complex. The challenge is not only to

collect and manage the data also how to extract the useful

information from that collected data.

According to the Intel IT Center, there are many
challenges related to Big Data which are data growth, data

infrastructure, data variety, data visualization, data

velocity.

Garlasu, D.; Sandulescu, V. ; Halcu, I. ; Neculoiu, G. ;(

17-19 Jan. 2013),”A Big Data implementation based on

Grid Computing”, Grid Computing offered the advantage

about the storage capabilities and the processing power

and the Hadoop technology is used for the implementation

purpose. Grid Computing provides the concept of

distributed computing. The benefit of Grid computing

center is the high storage capability and the high

processing power. Grid Computing makes the big

contributions among the scientific research, help the
scientists to analyze and store the large and complex data

[4].

3. PROPOSED WORK

 Data is conceptually record-oriented in the Hadoop

programming framework. Individual input files are broken

into lines or into other formats specific to the application

logic. Each process running on a node in the cluster then

processes a subset of these records. The Hadoop

framework then schedules these processes in proximity to
the location of data/records using knowledge from the

distributed file system.

 Since files are spread across the distributed file system as

chunks, each compute process running on a node operates

on a subset of the data. Which data operated on by a node

is chosen based on its locality to the node: most data is

read from the local disk straight into the CPU, alleviating

strain on network bandwidth and preventing unnecessary

network transfers. This strategy of moving computation to

the data, instead of moving thedata to the computation

allows Hadoop to achieve high data locality which in turn

results in high performance.

PKMeans Based on MapReduce
As the analysis above, PKMeans algorithm needs one kind

of MapReduce job. The map function performs the

procedure of assigning each sample to the closest center

while the reduce function performs the procedure of

updating the new centers. In order to decrease the cost of

network communication, a combiner function is developed

to deal with partial combination of the intermediate values

with the same key within the same map task.

Map-function The input dataset is stored on HDFS[11] as
a sequence file of<key, value>pairs, each of which

represents arecord in the dataset. The key is the offset in

bytes of this record to the start point of the data file, and

the value is a string of the content of this record. The

dataset is split and globally broadcast to all mappers.

Consequently, the distance computations are parallel

executed. For each map task, PKMeans construct a global

variant centers which is an array containing the

information about centers of the clusters. Given the

information, a mapper can compute the closest center

point for each sample. The intermediate values are then

composed of two parts: the index of the closest center
point and the sample information. The pseudo code of map

function is shown in Algorithm.

MapReduce Programming Model MapReduce is a

software framework proposed by Google, which is a basis

computational model of current cloud computing platform.

Its main function is to handle massive amounts of data.

Because of its simplicity, MapReduce can effectively deal

with machine failures and easily expand the number of

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51148 226

system nodes. MapReduce provides a distributed approach

to process massive data distributed on a large -scale

computer clusters. The input data is stored in the

distributed file system (HDFS), MapReduce adopts a

divide and conquer method to evenly divided the inputted
large data sets into small data sets, and then processed on

different node, which has achieved parallelism.

In the MapReduce programming model, data is seen as a

series of keyvalue pairs like , as shown in Figure 1, the

workflow of MapReduce consists of three phases: Map,

Shuffle, and Reduce. Users simply write map and reduce

functions. In the Map phase, a map task corresponds to a

node in the cluster, as the other word, multiple map tasks

are be running in parallel at the same time in a cluster.

Each map call is given a key-value pair (k1,v1) and
produces a list of (k2,v2) pairs. The output of the map

calls is transferred to the reduce nodes (shuffle phase).

All the intermediate records with the same intermediate

key (k2) are sent to the same reducer node. At each reduce

node, the received intermediate records are sorted and

grouped (all the intermediate records with the same key

form a single group). Each group is processed in a single

reduce call. The data processing [4-6] can be summarized

as follows: Map (k1, v1) −→ list(k2, v2)

 Reduce (k2, list(v2)) −→ list(k3, v3)

4. CONCLUSION

We propose general, sound methods to transform batch

queries to incremental queries. The first step in our

approach is to transform a query so that it propagates the

join and group-by keys to the query output. This technique

is known as lineage tracking .That way, the values in the

query output are grouped by a key combination, which

corresponds the join and group-by keys used in deriving

these values during query evaluation.

 If we also group the new data in the same way, then

computations on current data can be combined with the
computations on the new data by joining the data on these

keys. This approach requires that we can combine

computations on data that have the same lineage to derive

incremental results. In our framework, this task is

accomplished by transforming a query to a ’monoid

homomorphism’ by extracting the non-homomorphic parts

of the query outwards, using algebraic transformation

rules, and combining them to form an answer function,

which is detached from the rest of the query.

We present a general automated method to convert most

distributed data-analysis queries to incremental stream

processing programs.

• Our methods can handle many forms of queries,

including iterative and nested queries, group-by with

aggregation, and joins on one-to-many relationships.

• We report on a prototype implementation of our

framework using Apache MRQL running on top of

Apache Spark Streaming. We show the effectiveness of

our method through experiments on four queries:

groupBy, join-groupBy, k-means clustering, and

PageRank.

REFERENCES

[1] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin Summingbird: A

Framework for Integrating Batch and Online MapReduce

Computations. In International Conference on Very Large Data

Bases (VLDB), pages 1441–1451, 2014

[2] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J.

C. Platt, J. F. Terwilliger, J. Wernsing. Trill: A High-Performance

Incremental Query Processor for Diverse Analytics. In International

Conference on Very Large Data Bases (VLDB), pages 401–412,

2014.

[3] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M.

Abadi. Naiad: a Timely Dataflow System. In ACM Symposium on

Operating Systems Principles (SOSP), 2013.

[4] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin.

Incoop: Mapreduce for Incremental Computations. In ACM Sym-

posium on Cloud Computing (SoCC), 2011.

[5] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,

and R. Sears. Mapreduce Online. In USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 10(4),

2010.

[6] D. Peng and F. Dabek. Large-scale Incremental Processing using

Distributed Transactions and Notifications. In Symposium on Oper-

ating System Design and Implementation (OSDI), 2010.

[7] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig

Latin: a not-so-Foreign Language for Data Processing. In ACM

SIGMOD International Conference on Management of Data, pages

1099-1110, 2008

[8] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs:

Databases with Uncertainty and Lineage. In International Confer-

ence on Very Large Data Bases (VLDB), pages 953–964, 2006.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing

on Large Clusters. In Symposium on Operating System Design and

Implementation (OSDI), 2004.

[10] D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya. An

Annotation Management System for Relational Databases. In

International Conference on Very Large Data Bases (VLDB), pages

900– 911, 2004.

[11] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A Recursive

Model for Graph Mining. In Fourth SIAM International

Conferenceon Data Mining (SDM), pages 442–446, 2004.

[12] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.

Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F.

Reiss, and M. Shah. TelegraphCQ: Continuous Data flow

Processing for an UncertainWorld. In Conference on Innovative

Data System Research (CIDR), 2003.

[13] Apache Hadoop. http://hadoop.apache.org/.

[14] Apache S4 (incubating): A Distributed Stream Computing

Platform. http://incubator.apache.org/s4/.

[15] Apache S4 (incubating): A Distributed Stream Computing

Platform.http://incubator.apache.org/s4/.

[16] Apache S4 (incubating): A Distributed Stream Computing

Platform. http://incubator.apache.org/s4/.

[17] D. J. Abadi, D. Carney, U. Cetintemel, et al. Aurora: A New Model

and Architecture for Data Stream Management. In VLDB Journal,

12(2):120–139, 2003.

[18] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.

Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F.

Reiss, and M. Shah. TelegraphCQ: Continuous Data flow

Processing for an UncertainWorld. In Conference on Innovative

Data System Research (CIDR), 2003.

[19] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models

and Issues in Data Stream Systems. In Symposium on Principles of

Database Systems (PODS), pages 1–16, 2002.

http://hadoop.apache.org/
http://incubator.apache.org/s4/

